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Scaling theory and spreading dynamics in systems with one absorbing state derived
from an equilibrium statistical model
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We show that for systems with one absorbing state, the widely assumed scaling properties of the survival
probability and of the probability density of the size of activity avalanches cannot be true in the asymptotic
limit. Trying to answer the question, what is the true asymptotic limit of these quantities, we study Domany-
Kinzel probabilistic cellular automata using an equilibrium statistical mechanic model~ESM!. We are able to
express important quantities of the avalanche dynamics by correlation functions of the ESM. The application
of scaling theory to the ESM allows for the derivation of the scaling properties of quantities of the avalanche
dynamics in the form of infinite series. From these results we can obtain possible solutions for the apparent
scaling problem, but cannot decide definitely which one is true. The most appealing solution, for which some
evidence is given, states that there is a narrow range around the critical point in which, for example, the
survival probability has the same power-law behavior as on the critical point. Outside this narrow range, the
usually assumed scaling should be approximately valid.
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I. INTRODUCTION

Stochastic nonequilibrium systems with absorbing sta
i.e., states in which the system can be trapped without
fluctuations, and with phase transitions from the absorb
states to active states are important models for descri
real world processes such as the spread of epidemics, p
lation processes, autocatalytical reactions, and many m
for an overview see Ref.@1#. A canonical example of such
systems with one absorbing state is the directed percola
~DP! universality class. This DP class has been extensiv
investigated in the past@1–3,8,19# and it seems that we hav
now a full understanding of these systems. However, in
paper, we show that there are problems left concerning
scaling in the vicinity of the critical point of certain probabi
ity distributions describing the dynamic of the spreading
activity avalanches generated from a localized ‘‘seed’’ of
tivity in the absorbing state. An example is the survival pro
ability P(t) of avalanches and the probability densityp(s) of
the size of avalanches. First, we show exactly that the u
ally assumed scaling ofP(t);t2dg(Dt1/n i) and p(s)
;s2t f (Dss), whereD is the distance from the critical poin
and d, n i , t, s are universal critical exponents, cannot
true in the asymptotic limitt→`, s→`, D→0. We present
simulation results for a four-dimensional Domany-Kinz
probabilistic cellular automaton~PCA! @4,5# that exhibit
relative clearly that there is no conventional scaling forP(t).
Indeed, up to now, the theoretical foundation for the assum
scaling ofP(t) andp(s) is not very strong. The origin of the
scaling of other quantities of the spreading dynamic of a
lanches, such as the mean number of active sites in
lanches or the mean spatial extension of avalanches@6,7#, is
well understood from the renormalization of the field the
retical formulation of the system model continuous in spa
and time@8,9#. This is the case, because these quantities
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be expressed by correlation functions of the continuous fie
for which the scaling properties are well established from
renormalization group approach. The continuous field
proach is not capable to describe the avalanche dynamic,
is mainly the case because the absorbing state is a s
measure zero@10#. Therefore, to investigate theoretical
what the correct asymptotic behavior ofP(t) andp(s) near
the critical point is, we must use the original discrete spa
structure of the PCA on a lattice and describe it by a Mark
process continuous or discontinuous in time@1,11#.

In the second part of the paper we use a description
Markov process discontinuous in time together with t
long-known fact that thed-dimensional Domany-Kinze
PCA can be mapped to an equivalent equilibrium statist
mechanic model~ESM! described by a Hamiltonian on
discrete space-time lattice@4,5,12,14#. We are able to expres
the survival probabilityP(t) and the mean life-timeDA of
avalanches as series over certain correlation functions of
corresponding ESM. Applying the principles of the reno
malization group to the ESM Hamiltonian, we get the scali
properties of the ESM correlation functions. Using the
properties the behavior ofP(t) for large t near the critical
point is obtained in the form of an infinite series. Also, f
DA we get an infinite series of certain power-law terms. T
second part of the paper is somewhat cumbersome, bu
think that it is necessary to review the mapping of a PCA
an ESM in some details to be able to derive the meaning
the ESM correlation functions and the scaling properties
these functions. These results are central to our approach
are not presented in the literature up to now in sufficie
detail. From the derived series expansion ofP(t) and DA ,
we are able to point out the possibility that there is a narr
range around the critical point, where the scaling ofP(t) is
the same as on the critical point, namelyP(t);t2d, and the
conventional scaling is only approximately valid outside th
narrow range. We cannot prove this very unusual view
actly, but we present some evidence from theoretical con
erations and from simulation results that it may be true. If
©2001 The American Physical Society13-1
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RENATE ALBAT PHYSICAL REVIEW E 64 026113
are wrong, there is only the possibility thatP(t) obeys no
universal scaling properties asymptotically, and this is
very satisfactory.

II. ANOMALOUS SCALING OF THE SURVIVAL
PROBABILITY

Consider a PCA from the DP universality class defined
an infinite discrete space lattice. Each lattice site can be i
active or inactive state. The time evolution is considered
be continuous or discontinuous. Setting a site active in
absorbing state results in the development of an avalanch
activation. If the system parameters are such that no ac
phase exists, the avalanche is always dumped out in a fi
time and the absorbing state is reached again. In the case
an active phase exists, there is some probability that the
tive state is reached for timet→`. For a definition and dis-
cussion of the critical exponents, the scaling properties
quantities used in the description of the spreading dynam
and for the derivation of scaling relations between the criti
exponents, see Refs.@1,6,7#. The survival probabilityP(t) of
activity avalanches is the probability that at timet the ab-
sorbing state is not reached. The usually assumed asymp
scaling behavior ofP(t) in the vicinity of the critical point is

P~ t !;
1

td
g~ t1/n iD!, ~1!

whereD is the distance from the critical point, we choo
D,0 in the inactive phase andD.0 in the active phase, an
d, n i are universal critical exponents. The probability dens
of P(t) is p(t)52]P(t)/]t for large t. From Eq. ~1! we
obtain

p~ t !;
1

t11d
h~ t1/n iD!. ~2!

The exact meaning of Eq.~2! is

lim
t→`,D→0

p~ t,D!

pa~ t,D!
51, ~3!

wherep(t,D) is the real probability density andpa(t,D) is
the right-hand side of Eq.~2!. Note that Eq.~2! does not
determinepa(t,D) uniquely, it is only a necessary conditio
For a discontinuous PCA, functions such asp(t,D) are only
defined on discrete time steps. In this case, we extend
definition to continuous times using staircase functions, t
all summations over discrete times can be expressed by
tegrations over time. The survival probability isP(t,D)51
2*0

t p(u,D)du, and the normalization condition ofp(t,D)
reads*0

`p(t,D)dt512 P(`,D), whereP(`,D)50 for D
,0. For the following consideration, it is important that f
finite times it is possible to writep(t,D)5(n50

` pn(t)Dn.
This must be true for a discontinuous PCA, because the
date rules ensure that the probability of each possible ac
tion pattern occurring at a given time is a polynomial of t
probability parameters of the update rules. A continuous P
02611
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can be considered as the limit of a sequence of discontinu
PCA’s with time-step differences going to zero, so that in t
case,p(t,D) must also be a power series inD. It is safe to
write P(t,D)512(n50

` @*0
t pn(u)du#Dn, showing that

P(t,D) is also a power series inD for finite times. We are
now able to prove that the Eq.~3! cannot be valid. The cru-
cial points are that the condition*0

`p(t,D)dt51 must be
fulfilled for D,0 independent ofD and thatp(t,D) can be
expanded in a power series ofD.

Suppose that Eq.~3! is valid, we can write

p~ t,D!5pa~ t,D!1«~ t,D!, ~4!

and choose at0 and a uD0u such that fort.t0 and uDu
,uD0u it is u«(t,D)u! pa(t,D) and

U E
t0

`

«~ t,D!dtU!E
t0

`

pa~ t,D!dt. ~5!

Further, we conclude thatpa(t,D) is also a power series in
D. The normalization condition now reads

12P~`,D!2 (
n50

`

cnDn5E
t0

`

pa~ t,D!dt1E
t0

`

«~ t,D!dt,

~6!

where cn5*0
t0pn(t)dt. For DÞ0 and after substitutingu

5uDut1/n i, the first integral in Eq.~6! is

E
t0

`

pa~ t,D!dt5n iuDun idS E
uDut

0

1/n i

u0 h6~u!

u11n id
du

1E
u0

` h6~u!

u11n id
duD , ~7!

with the constantu0.uD0ut0
1/n i andh6(u) being the parts of

h for D.0 andD,0. Consider the right-hand side of Eq
~7!, the second integral is a constant independent ofD, fur-
ther insertingh6(u)5(n50

` hn
6un into the first integral and

integrating all terms, we obtain

E
t0

`

pa~ t,D!dt5
h6~0!

dt0
d

2n ia
6uDun id1 (

n51

`

an
6uDun ~8!

for d51,2,3, where n id,1 @6#, a65*0
`du@h6(0)

2h6(u)#/u11n idÞ0, and

E
t0

`

pa~ t,D!dt5
h6~0!

t0
2h1

6uDu ln~ uDu!1 (
n51

`

bn
6Dn ~9!

for d>4, with n i5d51 @6#. The an
6 and bn

6 are constants
independent ofD. From this result it follows that forD,0,
where P(`,D)50, andD→0 there is a singularity~for d
>4 we assumeh1

6Þ0), so that* t0
` pa(t,D)dt cannot be ex-

panded in a power series ofD aroundD50, and because o
Eq. ~5!, this singularity cannot be canceled out by a possi
similar singularity of* t0

` «(t,D)dt. The conclusion is that Eq
3-2
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SCALING THEORY AND SPREADING DYNAMICS IN . . . PHYSICAL REVIEW E64 026113
~6! cannot be satisfied, thus, the scaling ofp(t,D) is not
possible forD,0 in the sense of Eqs.~3! and ~2!. Further,
the scaling of the survival probability given by Eq.~1! can-
not be true. An exception can be thed>4 case, where scal
ing is possible if the scaling function is such thath1

650, but
that seems very unlikely. The density of avalanche si
p(s,D) also cannot scale forD,0 in the usual form given
above. This follows from the fact thatp(s,D) is also expand-
able as a power series inD, and the above derivation is vali
with minor changes ifn i is replaced by 1/s andd by t21.
Note that the above arguments do not apply to quantities
which no normalization condition is needed, for examp
not to the mean number of active sitesI (t,D);thf(t1/n iD)
@6# in activity avalanches at a given time.

We have shown that forD,0 the usual assumed scalin
is not possible forp(t,D) and P(t,D). Is this also true for
D.0? From the above discussion we cannot infer this,
cause nowP(`,D).0 and P(`,D) may have the correc
singularity forD→0 to satisfy the Eq.~6!. Indeed, the scal-
ing assumption Eq. ~1! can be written as P(t,D)
;Dn idg̃(t1/n iD) , so it seems thatP(`,D);Dn id @1,7#, and
at least ford51,2,3 this is the needed singularity. But th
conclusion is wrong as is now shown:P(t,D) can be ex-
panded in power series ofD, therefore, alsog(u), whereu
5t1/n iD. To get P(`,D);Dn id we needg(u);un id for u
→`. Writing g(u)5cun id1«(u) shows that there must ex
ist a u0.0 such that foru.u0 it is u«(u)u! cun id, so«(u)
cannot cancelcun id. Thus, it is necessary thatun id can be
expanded in a unique power series in the rangeu0,u,` to
fulfill the last equation, but this is not possible ifn id is not
an integer. Ford51,2,3 n id is not an integer, so the scalin
assumption cannot be true. Ford>4, this is also the case
becauseP(`,D) has not the needed singularityD ln D of
Eq.~9!. Later it is shown thatP(`,D);Dn id is indeed true,
but this can only be realized if the scaling assumption is
true. Then inP(t,D)5(n50

` Pn(t)Dn thePn(t) can go in the
limit t→` to 6`, so that it is not possible to calculat
limt5` P(t,D) by applying limt5` to each term of the series
and thus, it can be thatP(`,D) is not a power series inD.

Now the question arises what the correct asymptotic
havior ofp(t,D) andp(s,D) really is. From the above resu
we can only conclude thatp(x,D);x2« f (x,D), where x
5t,s, «511d,t and f (x,D) must be a power series inD
for finite x and limx5` f (x,0).0. Before we try to answe
this question, we present some simulation results, wh
show relatively clearly that the scaling ofP(t,D) for some
cases is not even fulfilled approximately. We have perform
extensive simulations of the Domany-Kinzel PCA@4,5# for
the dimensionsd51 andd54 on a hypercubic lattice, an
with the update rule that a site is activated with probabilityp
if at least one nearest neighbor is active. The results s
that for the cased51 in the inactive phase and in the ran
uDut1/n i50.005, . . . ,0.06, corresponding to maximal ava
lanche durations up tot550 000 and 104uDu50.5, 1.0, 2.0,
the scaling ofP(t,D) is nearly as good as ofI (t,D). For this
simulation, the highly accurate values forpC , n i , h, andd
obtained by Jensen@16# from series expansions are use
According to the above result, the accuracy of scaling sho
02611
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break down for largeruDut1/n i values and the same or less
D values, but these values are not reachable for simulati
But for d54, the situation is completely different, in th
inactive phase and the rangeuDut1/n i50.025, . . . ,0.12, cor-
responding to maximal avalanche durationt510 000 and
105uDu50.3, 0.5, 0.8, 1.3, 2.3, the scaling ofP(t,D) is very
bad compared to theI (t,D) scaling, as shown in Fig. 1. Th
pC value has been determined similar as described by V
and Ziff @19# from a plot of I (t)/th versust1/n i, with h50
andn i51, for differentD values. The obtained result ispC
50.146 1580(5). Thesample size for eachD value has been
about 107 avalanches, resulting in a statistical error cons
erably lower than the scaling violation ofP(t,D). It would
be tempting to attribute the bad scaling ofP(t,D) to a large
correction to scaling, but Fig. 1 does not show that the s
ing violation goes to zero forD→0, therefore, we conclude
that the result indicates thath1

6Þ0, and thus, there is no
exact scaling.

The above results can be extended to systems in the
class with nonuniversal exponentd, especially systems with
many absorbing states@1,17#. The only requirement is tha
p(t,D) is expandable in a power series ofD, but this should
be the case. The anomalous scaling of avalanche quan
shown above has some similarities with situations in ot
contexts. For example, in the theory of kinetic roughening
is known that the scaling function of the local interface wid

FIG. 1. Scaling of the survival probability~a! and the activity
intensity ~b! for a four-dimensional Domany-Kinzel PCA near th
critical point pc50.146 1580(5) for 105D50.3, 0.5, 0.8, 1.3, and
2.3 ~from above to below! in the inactive phase.
3-3
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RENATE ALBAT PHYSICAL REVIEW E 64 026113
is not always an analytical function of a quantity that ha
meaning analogous tot1/n iD, for details see@18#. But in our
case, the situation is much more serious, it isp(t,D)
;t2d f (t,D) and it is not possible thatf is only a function of
t1/n iD. In the following part of the paper we try to answer th
now apparent scaling problem of quantities important for
description of activity avalanches. As explained in the Int
duction, discrete lattice models must be used to get insid
the dynamic of activity avalanches.

III. MAPPING OF A PCA TO AN EQUILIBRIUM
STATISTICAL MECHANICAL MODEL

We consider PCA models on discreted-dimensional lat-
tices of N sites, which evolve in discrete time stepst
50,1,2, . . . , andwhere each lattice sitei at time t can be
only in an inactive statesi

t50 or in an active statesi
t51. The

global state of the PCA at timet is given by I
5(s1

t ,s2
t , . . . ,sN

t )5$si
t%. It is assumed that the time evolu

tion of the PCA is a Markov process

P~ t11!5TP~ t !5Tt11P~0!, ~10!

whereP(t)5@PI(t)# is the column vector of the probabili
ties PI(t) that at timet the PCA is in the stateI, and T
5(TI ,J) is the matrix of transition probabilities from stateJ
to stateI. The update rules of the PCA are assumed to
such that there are local probabilitiesp(si

t11uni
t), so that

TI ,J5)
i 51

N

p~si
t11uni

t!, ~11!

with I 5$si
t11% and J5$sj

t%, and ni
t5(sj 1

t ,sj 2

t , . . . ,sj K

t ) de-

scribes all possible states ofK sites from a neighborhoodU
of site i. To preserve the total probabilityp(0uni

t)1p(1uni
t)

51 is required. For later use, some well-known results ab
Markov processes are listed. Ifla are the eigenvalues,fa

R

~column vector! the right eigenvectors andfa
L ~row vector!

the left eigenvectors ofT, the spectral representation ofTt is
Tt5(a(la) tTa , with Ta5fa

Rfa
L andfa

Lfb
R5dab . Assum-

ing the ergodic condition (Tt) I ,J.0 for somet and allI ,J, a
unique eigenvaluela51 with fa

L5(1,1, . . . ,1) will exist
and the other eigenvalues areulbu,1. In this case the PCA
evolves to the stationary stateP(`)5fa

R independent of the
system history. If the PCA is not ergodic or the system sizN
goes to infinity, there can be more than one eigenvaluela
51 @14#. For N→` a hypersurface can exist in the spaceV
of parameters defining the local transition probabilitiesp on
which the number of eigenvaluesla51 change. This hyper
surface separates different phases of the system. Consi
point of V with more than one eigenvaluesla51: more
than one stationary state~attractor! will exist and the selected
one depending on the initial conditionP(0).

From the Markov process, an equivalent equilibrium s
tistical mechanic model~ESM! can be obtained. For detaile
properties of the ESM and for applications see Re
@4,5,12,14#. We now review the construction of the ESM.
path of statesI 0 , I 1 , . . . , I M21 evolving from t50 to t
02611
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5M21 can be considered as the configurations of ad11
dimensional lattice. Using Eqs.~10! and~11! the probability
of such a history path is given by

pPath5TI M21 ,I M22
•••TI 2 ,I 1

TI 1 ,I 0
5exp@2H~st

t!#,
~12!

where

H~st
t!52(

i 51

N

(
t50

M21

@ ln$p~si
t11uni

t!%1hi
tsi

t#, ~13!

and thehi
t are auxiliary fields that go finally to zero. Thi

construction can be viewed as ad11-dimensional system
defined on a discrete lattice in thermodynamic equilibriu
with an HamiltonianH(st

t) and a transfer matrixT. The par-
tition function Z(M ,N) of this finite ESM depends on th
boundary conditions adopted for thed11-dimensional lat-
tice. Choosing thet50 boundary~stateI 0) as fixed and sum-
ming over all other site statessi

t50,1 yieldsZ51 indepen-
dent of I 0 @13#. This is simply a consequence of( ITI ,J51.
The drawback of this boundary condition is that formally f
eachI 0 there is a different Hamiltonian. To circumvent th
we simply sum over allI 0 states yieldingZ52N. Another
possibility choosing the boundary conditions isI 05I M21
~periodic boundary conditions! @14#. Using the spectral rep
resentation ofTM we get for this case

Z~M ,N!5(
I

~TM ! I ,I5(
a

~la!M. ~14!

Here,Z depends also on the boundary condition of the sp
lattice ~by the la,1). In the limit M ,N→` it is Z5A,
whereA is the number of attractors~number ofla51). All
these different boundary conditions and others that are p
sible generate only surface effects, and as a consequenc
M ,N→` these effects should disappear in observable qu
tities. Indeed, the free energy per site of the space-time
tice is always zero. Further, the later consideredn-point cor-
relation functions (n-CF) of the ESM should be independe
of the boundary conditions, provided the ESM is defied b
unique Hamiltonian. Thus, the partition function of the ES
can be assumed as

Z5Tr@exp$2H~st
t!%#, ~15!

where Tr means summing over all statessi
t50,1 of the sites

in the space-time lattice. In the derivation of the meaning
then-CF’s, we use the Eq.~14! for Z, because the derivation
then is easier, but the result should be independent of
use.

The n-CF are defined in the usual way by

^si 1

t1si 2

t2, . . . ,si n

tn&5
1

Z

]nZ

]hi 1

t1]hi 2

t2, . . . ,]hi n

tnU
h→0

. ~16!

Substituting Eq.~14! into Eq. ~16! a n-CF can be expresse
for t1<t2< . . . <tn as
3-4
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^si 1

t1si 2

t2, . . . ,si n

tn&5 lim
M ,N→`

1

Z~M ,N! (
I n, , . . . ,I 1 ,I

TI ,I n

M2tn~si n

tn! I n
TI n ,I n21

tn2tn21 . . . ~si 2

t2! I 2
TI 2 ,I 1

t22t1~si 1

t1! I 1
TI 1 ,I

t1 , ~17!

where (si
t) I is one if in I the sitei at t is active and zero otherwise. Inserting the spectral representation forTI ,I n

M2tn andTI 1 ,I
t1 ,

we get

^si 1

t1si 2

t2, . . . ,si n

tn&5
1

A (
a(la51)

~Qi 1 ,i 2 , . . . ,i n

t1 ,t2 , . . . ,tn!a , ~18!

with

~Qi 1 ,i 2 , . . . ,i n

t1 ,t2 , . . . ,tn!a5 lim
N→`

(
I n, , . . . ,I 1

fa
L

I n
~si n

tn! I n
TI n ,I n21

tn2tn21 . . . ~si 2

t2! I 2
TI 2 ,I 1

t22t1~si 1

t1! I 1
fa

R
I 1

. ~19!
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For the caseA51 and finiteN we havefa
L

I n
51, thus, each

n-CF is the joint probability to observe active sites
( i 1 ,t1), (i 2 ,t2), . . . ,(i n ,tn) if the system is at timet1 in the
unique stationary state. This interpretation must also be
in the limit N→`. For the caseA.1 andN→` the situa-
tion is not so clear, but we can argue in the following way:
for finite N the system is not ergodic, there can be more th
onela51, but then theT matrix must disconnect, after a
appropriate reordering of the states, into submatrices a
the diagonal. Therefore, it seems plausible that an erg
system with more than onela51 for N→` tends to a none-
ergodic behavior for very largeN, meaning theT matrix
approximately disconnects and there areA21 eigenvalues
extremely near to one. Further, the correspondingfa

R
I have

only large positive values for a specific range of states
thefa

L
I are large and nearly one for the same range of sta

Then for N→` the quantity (Qi 1 ,i 2 , . . . ,i n

t1 ,t2 , . . . ,tn)a describes the

same joint probability as above, but now for the attractora,
and eachn-CF is the average of these joint probabilities ov
all attractors.

For a class of important PCA’s an explicit expression
p(si

t11uni
t) can be given that leads to an ESM Hamiltoni

that has the usual form of Hamiltonians studied in equil
rium statistical mechanics, namely, products of the state v
ablessi

t coupled together linearly using some coupling co
stants. Here we consider only thed-dimensional Domany-
Kinzel PCA@4,5#. The synchronous update procedure for t
PCA is: If at timet the sitei hasn50,1, . . . ,k active nearest
neighbors, this site is activated at timet11 with probability
pn and inactivated with probability 12pn , regardless of the
state ofi at t. We define functionsf n(ni

t)50,1, whereni
t is a

state of the setU of nearest neighbors of sitei. These func-
tions have the properties thatf n(ni

t)51 if exactly n of the
nearest neighbors of sitei are active andf n(ni

t)50 other-
wise. It is easy to see that thesef n can be realized as linea
combinations of products of thesi

t . For example, ford51 it
can be chosenf 05(12s11)(12s21), f 15s1(12s2)
1s2(12s1) and f 25s1s2 , where s11 and s21 are the
states of the two neighbors of a site, in general,f 0

5) j PU(12sj
t ). A valid ESM Hamiltonian is, as can be ea

ily verified, given by
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H~si
t!52(

i ,t
S (

n50

k

f n~ni
t!@si

t11ln~pn!1~12si
t11!

3 ln~12pn!#1hi
tsi

tD . ~20!

This Hamiltonian is the same as the one obtained
Domany and Kinzel@4#. Other valid ESM Hamiltonians can
be constructed@15#, but this one has a structure that is fam
iar in equilibrium statistical mechanics. This Hamiltonian
not well defined forpn→0,1, but then-CF’s are. A PCA with
one absorbing state is obtained forp0→0 andhi

t50. In the
spaceV of the pn with p050 andhi

t50 the only stationary
state for points near enough the origin ofV is the absorbing
state with activity zero, and there can be a continuous ph
transition at some hypersurface inV ~critical manifold!, so
that on the other side of this surface there are two station
states, the absorbing state and an active state with a m
activity greater than zero. It is known that there is no pha
transition for smallp0.0 and~or! small hi

tÞ0 and also not
in the limit p0→0, unless the limit point is on the critica
manifold @4,9#.

In equilibrium statistical mechanics for systems wi
similar Hamiltonians as given in Eq.~20! the scaling prop-
erties of correlation functions can be obtained using
renormalization group~RG!. Before this is accomplished, th
dynamics of the spreading of a perturbation applied to
absorbing state is studied in the framework of the ESM. I
then possible to make a connection between the scaling p
erties of then-CF’s and the quantities describing the sprea
ing dynamics.

IV. DESCRIPTION OF THE SPREADING DYNAMICS IN
THE ESM FRAMEWORK

Let us apply a perturbation to the absorbing state in
form that the sites of a setSare set active at a timet0. Then
an avalanche of activation is spread out for timest.t0. Con-
sider a finite system withp050, and denote the state wit
exactly all sitesi eS active asI S . Then the evolution of
PP(t0) with PP(t0) I S

51 andPP(t0) I50 otherwise, as given
3-5
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RENATE ALBAT PHYSICAL REVIEW E 64 026113
by Eq.~ 10!, describes the spreading of a perturbationSwith
m active sites. We are especially interested in the joint pr
ability to find at timet.t0 the sitesi 1 , i 2, . . . , i n active,
which is

pi 1 ,i 2 , . . . ,i n
t 5(

I ,J
~si 1

t si 2
t . . . si n

t ! I~Tt2t0! I ,JPP~ t0!J .

~21!

Our goal is to describe this process in terms ofn-CF’s of the
ESM. To do this, a system with a smallp0 and the stationary
statef0

R(p0) is considered, and finallyp0→0 is carried out.
If it is possible to express the components ofPP(t0) as sums
over thef0

R(p0)J , the Eq.~18! can be used to transform th
right side of Eq.~21! to n-CF’s. One possibility is to choos

PP~ t0! I5
1

p0
m )

i eS
~si

t0! I(
J

TI ,J)
j eS

f 0~nj
t021

!Jf0
R~p0!J .

~22!

To see that this is correct, we note that the fac
) j eSf 0(nj

t021)Jf0
R(p0)J is nonzero only if in the stateJ for

all j eS all sites fromU are inactive. On the other hand, th
right side of Eq.~22! is only nonzero for statesI with all i eS
active, and to get such anI the TI ,J can only generate thes
active sites using at leastm spontaneous activations wit
probability p0. Therefore forp0→0 the right-hand side o
Eq. ~22! is one forI 5I S and zero otherwise, where we hav
used the fact thatf0

R(p0) I is 12O(p0) for I 5(0,0, . . . ,0)
and O(p0) otherwise. Substituting Eq.~22! into ~21! and
using Eq.~18!, we obtain

pi 1 ,i 2 , . . . ,i n
t 5 lim

p0→0

1

p0
m K si 1

t si 2
t . . . si n

t )
i PS

si
t0f 0~ni

t021
!L

0

,

~23!

where the ESM averagê. . . &0 is the part of^ . . . & that
goes to zero in the limitp0→0. This is always the case fo
finite N, but Eq.~23! is also valid in the limitN→` and for
an active phase. Here, the part of^ . . . & that goes to a con
stant forp0→0 is not included in̂ . . . &0. If S consists of
one sitei 0, the pi 1 ,i 2 , . . . ,i n

t must be zero if for at least on

site i k with the position vectorr i k
it is ur i k

2r i 0
u.t2t0. This

condition is called the cone condition. ForS with more than
one site, this condition is more complicated, but it is alwa
ensured by Eq.~23!, as can be easily verified.

Summingpi 1 ,i 2 , . . . ,i n
t over all sites forn51, over all dif-

ferent pairs of sites forn52, over all different triplets of
sites for n53, and so on for greatern, we get a quantity
called then-intensity, which is

I n~ t !5
1

n! (
i 1Þ i 2Þ, . . . ,Þ i n

pi 1 ,i 2 , . . . ,i n
t . ~24!

In spreading experiments@6# I (t)5I 1(t) is measured. Gen
erally, I n(t) can be measured by cumulating at each time s
the possible combinations (n

l ) of the l active sites in the
02611
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evolution of avalanches. Now it is possible to express
survival probability using only then-intensities. The quantity

Q~ t !5(
I ,J

)
i

~12si
t! I~Tt2t0! I ,JPP~ t0!J ~25!

is the probability that at timet there is no activity remaining
meaning the probability that an avalanche has a dura
between t0 and t. Therefore, the survival probability is
P(t)512Q(t) and it is obtained from Eq.~25! by substitut-
ing Eq. ~22!, using Eqs.~23! and~ 24! and settingt050 for
t.0 as

P~ t !5 (
n51

`

~21!n21I n~ t !, ~26!

and P(0)51. Because of the cone condition we must ha
I n(t)50 for all n.n0(t);td, so that the sum overn is really
finite for each finitet. The probability that an avalanche ha
a durationt>0 is p(t)5P(t)2P(t11). The mean duration
of an avalanche is defined byDA5( t51

` tp(t). Using Eq.
~26! yields

DA5(
t51

`

P~ t !5 (
n51

`

~21!n21I n , ~27!

where I n5( t51
` I n(t) can be interpreted as the tot

n-intensity.

V. SCALING THEORY OF THE ESM

According to the RG principles, see for example R
@20#, it is assumed that near the critical manifold for sm
p0.0 and smallhi

t and provided thehi
t vary slowly enough

over the space-time lattice, a RG transformation exists. E
RG transformation consists of a coarse-graining transfor
tion and a subsequent rescaling to the original lattice spa
and transforms the coupling constants in the ESM Ham
tonian to a new set of coupling constants. We do not c
struct such a coarse-graining transformation explicitly, b
use only general properties of such transformation to deriv
scaling theory for then-CF’s. The coarse-graining uses sca
factorsa'.1 in the spatial directions andai.1 in the time
direction. Further, it is assumed that in the limitp0→0, a
valid RG transformation exists. A sequence of such R
transformations started on the critical manifold has coupl
constants that stay on the critical manifold and flow~RG
flow! to a unique critical point on this manifold. A sequen
of RG transformations that starts near the critical manif
causes a RG flow off the critical manifold. Thus, the critic
point is a fixed point of the RG transformation, and there
only one line inV (p050, hi

t50) from which the RG flow
starts off the critical point. The distance on this line is me
sured byD.0 if the RG flow goes in the active phase and
D,0 otherwise. In the vicinity of the critical point, the RG
transformation can be linearized, yielding the linear transf
mation
3-6
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SCALING THEORY AND SPREADING DYNAMICS IN . . . PHYSICAL REVIEW E64 026113
D̃5LDD, p̃05L0p0 , h̃i
t5Lhhi

t , ~28!

whereLD , L0 , Lh are the eigenvalues of the linearized R
and it is assumed that there are negligible couplings betw
the D, p0, andhi

t directions. The RG flow goes off the criti
cal point in theD and hi

t directions, these directions ar
relevant in RG terms, thereforeLD.1 andLh.1. In thep0
direction, the situation is not so clear, and it turns out la
that it is marginal (L051) for the DP class. Because of th
group property of the RG, the eigenvalues must have
form

La5a'
y'a5ai

yia, ~29!

wherea5D,0,h andy'a ,yia.0 for relevant directions, and
zero for marginal directions. Ifj(D,p0) ~for hi

t50) is a typi-
cal spatial length andT(D,p0) is a typical time, for example
the correlation length and time of ann-CF, these quantities
transform under one RG step as

j~D̃,p̃0!;
1

a'

j~D,p0!, T~D̃,p̃0!;
1

ai
T~D,p0!. ~30!

Using Eqs.~28! and~29!, the singular part ofj andT in the
vicinity of the critical point is obtained from Eq.~30! as

j~D,p0!;
1

uDun'
f'~p0uDu2y'0n'!,

T~D,p0!;
1

uDun i
f i~p0uDu2yi0n i!, ~31!

with n'51/y'D and n i51/yiD . The scaling of a genera
n-CF

Gn~r i1 ,t i ,D,p0 ,hi
t!5^sj 1

u1sj 2

u2 , . . . ,sj n

un&, ~32!

where u1<u2< . . . <un , r i15r j i 11
2r j 1

, t i5ui 112u1

with i 51,2, . . . ,n21 for n.1, and where forn51 nor i , t i
dependence occurs, can be derived from Eq.~16! and the fact
that Z is invariant under an RG transformation. The resul

GnS r kl

a'

,
t i

ai
,D̃,p̃0 ,h̃i

tD;
a'

ndai
n

Lh
n

Gn~r kl ,t i ,D,p0 ,hi
t!,

~33!

where r kl5ur j k
2r j l

u@a' for all k,l 51,2, . . . ,n with k. l

and t i@ai for all i 51,2, . . . ,n21. In a similar way, as Eq
~31! is obtained from Eq.~30!, one finds that the scaling
properties ofGn for DÞ0 andhi

t50 are

Gn~r kl ,t i ,D,p0!;uDuanf n
6~r kluDun',t i uDun i,p0uDu2y'0n'!,

~34!

wherean5n@n i1n'(d2y'h)# and f n
1 is for D.0, f n

2 for
D,0. Because there is no phase transition forDÞ0 and
p0→0, it is possible to expand Eq.~34! in a power series of
p0D2y'0n', where the term of degreem reads
02611
,
en

r

e

s

Gn,m~r kl ,t i ,D,p0!;p0
muDuan2my'0n' f n,m

6 ~r kluDun',t i uDun i!.
~35!

The quantityG1,0 equals forp0→0 the constant mean activ
ity ^si

t&, which is greater than zero forD.0, therefore, from
Eq. ~35! we get^si

t&;Db with b5n i1n'(d2y'h). There is
an upper critical spatial dimensiondc , so that ford>dc the
mean-field values of the critical exponents are valid. For
DP universality class it isdc54, and n'51/2, n i51, b
51 are the mean-field values@1#, therefore ford54 we have
y'h54. For d.4 a scaling relation that includesd ~hyper-
scaling relation! cannot be valid. This is the consequence
the fact that ford>4 the above scaling theory with the re
evant or marginal scaling variablesD, h, p0, and all other
scaling variables are irrelevant cannot be true, at least on
the irrelevant variables must be a dangerous one@20#, mean-
ing that scaling functions such asf n

6 of Eq. ~34! are not
analytical in such a variable and this variable cannot be
nored. We do not further investigate the consequences
restrict ourselves tod<4. An important variant of Eq.~35! is

Gn,m~r kl ,t i ,D,p0!;
p0

m

t j
(nb2my'0n')/n i

f n,m~r kl /t j
z/2 ,t i

1/n iD!,

~36!

with z52n' /n i and t j being any of thet i . This expression
gives also the scaling form forD50. If some of thesj k

uk in

Eq. ~32! are replaced by clusters) ( i ,u)eVk
si

u , whereVk is a

set of sites around the site (j k ,uk) with an extension of the
ordera' in spatial direction andai in time direction, and the
distances between these clusters arer kl@a' and t j@ai , the
resultingn-CF must obey the same scaling as given by E
~34!, ~35!, and~36!.

Now we are ready to get the scaling properties of
pi 1 ,i 2 , . . . ,i n

t given by Eq.~23! for the case that the setS is a

set of sites around (i 0 ,t0) with an spatial extension of a
most the ordera' . The right-hand side of Eq.~23! can be
expressed as a sum over certainn-CF’s and each of these
terms has the form̂si 1

t si 2
t , . . . ,si n

t ) ( i ,u)PS0
si

u&, whereS0 is a

set that has the properties of the aboveVk sets, therefore the
scaling of each term can be obtained from Eq.~36! if t2t0
@ai and r kl5ur i k

2r i l
u@a' for k,l 50,1, . . . ,n, k. l . By

replacing eachsi k
t by the average over thesj

t belonging to

sites in a small spatial volume aroundi k , the corresponding
sum over thepi 1 ,i 2 , . . . ,i n

t is the averagedn-densityrn(r kl ,t)

of activations, which obey the scaling

rn~r kl ,t !;
1

t [(n11)b2my'0n']/n i
gn,mS r kl

tz/2
,t1/n iD D , ~37!

with n51,2, . . . , andgn,m is a scaling function proportiona
to f n11,m . It is not possible to realize the cone conditio
exactly with Eq.~37!, therefore, Eq.~37! is only valid within
the cone somewhat apart from the cone boundaries. Cons
the casem52 and the two perturbed sites are nearest nei
bors, then for the Domany-Kinzel PCA it is easy to see t
3-7
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RENATE ALBAT PHYSICAL REVIEW E 64 026113
the spreading of activation evolves independently in
same way on two different intertwinedi ,t sublattices@4#.
This means that then-density for the casem52 can differ
from the n-density form51 only by a constant factor an
cannot have different critical exponents as indicated by
~37!, thus, it followsy'050. Therefore, only three indepen
dent critical exponents exist, for examplen i , n' , andy'h ,
and it must be possible to express all other exponents
scaling relations using only a set of three independent ex
nents. This result is in accordance with other derivat
@1,6,7#. Because we are interested mainly in scaling prop
ties, it is sufficient to consider only the casem51.

Integrating Eq.~37! over all spatial coordinates gives th
n-intensity att as

I n~ t !;th1(n21)h1fn~ t1/n iD!, ~38!

whereh5dz/222b/n i andh15h1b/n i . For D50 then
intensity should increase witht, thereforeh.0 andh1.h
.0, and ford>4 it is h50 andh151. In the caseD,0
the n-intensity decays exponentially fort→` with a corre-
lation timeTn;uDu2n i. The leading part of the totaln inten-
sity is obtained forD,0 by integrating Eq.~38! over t,
which yields

I n;
cn

uDug1(n21)n ih1
, g5n i~11h!. ~39!

VI. SURVIVAL PROBABILITY OF ACTIVITY
AVALANCHES

In the asymptotic limit t→`, the survival probability
P(t) is obtained by inserting the scaling form Eq.~38! of
I n(t) into Eq.~26!. For fixedt, the infinite sum in Eq.~26! is
really finite, and the scaling form ofI n(t) is only valid for
t@(n/2)1/d, thus, in the asymptotic limit all terms must b
considered, and we get

P~ t !;th (
n50

`

~21!n~ th1!nfn11~ t1/n iD!. ~40!

Consider firstD50. In this case, the series in Eq.~40! is a
power seriesf (x) of x5th1, and for t→` we must have
P(t);1/td with 0,d<1. Therefore, there is ax0.0 such
that for x.x0 f (x)5x2k f̃ (x), with k.0 and limx→` f̃ (x)
.0. Assuming thatf̃ (x) can be expanded in a power seri
leads to the conclusion that this must be also true forxkf (x).
Because it is not possible to expandxk in a unique power
series for allx.x0 if k not an integer, so we conclude thatk
must be an integer. Thus,d1h2kh150, and ford54 we
haved5k, so that onlyk51 is possible. Assuming thatk is
independent ofd gives

P~ t !;
1

td
, d5h12h5b/n i . ~41!

Substitutingb/n i5d into the scaling relation forh leads to
4d12h5dz. This hyperscaling relation was first derived b
02611
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Grassberger and de la Torre@7# using the assumption that fo
D.0 and larget, a sphere with nearly constantr1 is expand-
ing with a constant velocityv, see also Ref.@1#. A further
derivation was recently given using a continuous field the
of the PCA@10#.

Using the last result we get forDÞ0

P~ t !;
1

td (
n51

`

~21!n21~ th1!nfn~ t1/n iD!. ~42!

The series in Eq.~42! has a complicated structure, and it
not obvious how we could get the usually assumed sca
form Eq.~1!. But we have already shown that really no su
scaling exists. ForD.0, P(t) must approach to the consta
value P(`)5r1 /^si

t&. From Eq. ~37! it follows r1

5D2b f (rDn') for t→` and assuming that for larget there is
ad-dimensional sphere with constantr1 expanding with con-
stant velocity, see Ref.@7#, we haver1;D2b, thus P(`)
;Db5Ddn i. The behavior ofP(t) for D,0 and larget de-
pends on the behavior of the infinite sum in Eq.~ 42!, but
this is a complicated task. To get more insight, we study
mean duration of avalanchesDA5*0

`tp(t)dt. Inserting Eq.
~39! into Eq. ~27! gives

DA;
1

uDug
(
n50

`

~21!n
cn11

~ uDuh1n i!n
. ~43!

The infinite series in Eq.~43! is a power series in 1/uDuh1n i.
There are three possibilities concerning the functional beh
ior of DA(D). The first possibility isDA;1/uDuk. Assuming
that the series in Eq.~43! is convergent forDÞ0 and using
arguments similar as above to get Eq.~41!, the asymptotic
behavior of Eq.~43! is obtained as

DA;
1

uDuk
, k5g2 lh1n i , ~44!

where l is an integer. Using the scaling relations forg, h1,
and d we get k5@11h2 l (d1h)#n i . For d54 we have
k512 l and to get ak>0 only l<1 is possible. Choosing
l<0 givesk>n i , where the equal sign is only valid ford
54 andl 50, and forl 51 we havek5n i(12d),n i . Set-
ting l 51, we have k5(12d)n i , this was derived by
Miguel et al. @6# using the scaling assumption. The seco
possibility isDA; f (D), where f (D) is a complicated func-
tion with limD50f (D)5`. The last possibility is that the
series in Eq.~43! does not converge in a narrow rangeuDu
,Dc aroundD50, meaningDA5` in this range. Strictly
speaking, the series in Eq.~43! cannot go to infinity in this
case, but the seriesDA5( t51

` P(t) @see Eq.~27!# then is also
divergent and givesDA5`. If the first or second possibility
is realized, a serious drawback of the universality of scal
arises, because Eq.~31! should be valid also forDA . This
can be only realized ifDA;uDu2k, but it is not possible to
choose the integerl in Eq. ~44! so thatk5n i for all d. The
last possibility is the most appealing one. The series in
~43! diverges if thecn approach forn→` not fast enough to
zero, that means precisely limn→`cn

1/n.0. If we assume this,
3-8
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SCALING THEORY AND SPREADING DYNAMICS IN . . . PHYSICAL REVIEW E64 026113
then there will exist such aDc so that in the rangeuDu
,Dc , the mean duration isDA5`. The consequence of thi
assumption is that foruDu,Dc , we must havep(t,D)
;h(D)/t11d, where limD→0h(D).0 andh(D) is analytical
around D50. We admit that this possibility looks ver
strange, but it gives foruDu,Dc a unified scaling view:
Equation~30! can be satisfied for all quantities for which
should be valid, and ifh(D) varies only slightly aroundD
50, this can be interpreted as a correction to scaling. N
that if really limn→`cn

1/n.0, the totaln-intensitiesI n must
grow exponentially forn→` and uDu,Dc , see Eq.~39!.

For the avalanche sizes, the situation is different beca
the mean size isSA5I 1, so thatSA;uDu2g. The consequence
is that p(s,D); f (s,D)/st, with f (s,D) analytical in D,
lims5` f (s,D)50 for DÞ0 and such that the correc
asymptotic behavior ofSA results. Indeed, assuming th
P(t);1/td for uDu,Dc , it is possible to construct such
f (s,D): Following the path of derivation given in@6# to get
the critical exponentt5(11h12d)/(11h1d), the aver-
age size of an avalanche with durationt is SA(t)
;* tdt8I 1(t8)/P(t8). Inserting for I 1 Eq. ~38! and P(t)
;1/td we get SA(t);t11h1df̂(t1/n iD). Assuming that the
conditional probabilityp(sut) for an avalanche having sizes,
given it dies at timet, is F(u) with u5s/SA(t) andF(u) is
bell shaped, with its maximum atu51, we get p(s)
;*`dtF(u)/@SA(t)t11d#. This p(s) is not a scaling func-
tion, but calculatingSA gives the correct resultSA;uDu2g.
Further it is easy to see that thisp(s) has a cutoffsc , which
is the maximal s value giving u51, and we getsc
;uDu21/s, where 1/s5n i(11h1d) in agreement with Ref.
@6# . On the other hand, if there is not a critical region w
P(t);1/td it is quite unclear how the correct asymptot
behavior ofSA could be obtained.

Outside the critical region defined byuDu,Dc it seems
that the conventionally assumed scaling behavior of the
cussed quantities is approximately valid. Inspecting the
sults of spreading experiments presented in the litera
@19,21#, the above hypothesis about the existence of suc
critical region looks not very appealing. Looking at simul
tion results forP(t,D) drawn in a double-logarithmicP vs t
plot seems to show forD,0 and larget approximately an
exponential behavior. According to our hypothesis, th
curves should make a crossing over from a slope largerd to
a constant sloped for large t, supposingD is sufficiently
close to zero. If this behavior really exists, it must res
outside the presently used maximal avalanche duration
such spreading experiments.

There is another indication, obtained from a simulati
experiment, which supports the above view of the scal
problem. If there is a lower boundJn<I n of I n with
limn→`Jn

1/n.0 for some fixedD nearD50, we conclude
from Eqs.~39! and~43! the existence of a critical region wit
DA5`. Such aJn could be the part ofI n in which exactlyn
and not more sites are active. For a finite system withN sites
we have Jn(N)<Jn<I n . Therefore, in spreading exper
ments with a fixedD,0 and system sizeN, the counting of
the number of events with exactlyn active sites givesJn(N).
For fixedN and largern<N it is difficult to getJn(N) values
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with low enough statistical fluctuations, but enlarging f
growing n the system size, for exampleN5nM with M
fixed, it is possible to get for relatively largen trustable
Jn(nM) values. Trustable values forI n(N)5( l 5n

N (n
l )Jl(N)

are difficult to obtain, so we hope that the lower bou
Jn(nM) can show the desired behavior from a plot
Jn(nM)1/n versus 1/n. This plot must clearly indicate that i
is possible to extrapolateJn(nM)1/n for 1/n→0 to a value
C.0 and the possibilityC50 can be excluded with high
enough certainty. We have done spreading experiments
the one-dimensional Domany-Kinzel PCA withp15p2
50.7054, which corresponds toD520.000 085 3. Figure 2
shows plots ofJn(nM)1/n as a function of 1/n for differentM
values, from below to above it isM58 with nmax51250 and
M516 and 32 withnmax52000. The statistical error of thes
data is lesser than the extension of the dots indicating
data points. The extrapolating curves are obtained from a
of the data points with a polynomial of degree three. T
curve for M532 should be very near the limit curve forN
→`. All data points are near one and far from zero, andn
goes up to very high values, indicating that it seems v
unlikely that this curve can ever go to zero for 1/n→0, but
that is not proof.

VII. CONCLUSIONS

We have shown that the probability densityp(t,D), the
survival probabilityP(t,D), and the size densityp(s,D) of
avalanches in the absorbing state of PCA’s from the DP u
versality class cannot obey the usually assumed asymp
scaling behavior. The origin for this anomalous behavior
the fact thatp(t,D) is expandable as a power series inD and

FIG. 2. Behavior of a lower bound of then-intensity for highn
values~up ton52000) for a one-dimensional Domany-Kinzel PC
with the sizeN5nM andM58,16, and 32~from below to above!
in the inactive phase near the critical point forp15p250.7054.
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that the condition*0
`p(t,D)dt1P(`,D)51 must be valid

for all D. Therefore, the question arises what is the corr
asymptotic behavior of these quantities near the phase
sition. To investigate this point, we have used an equilibri
statistical mechanic model~ESM! for a Domany-Kinzel PCA
in d dimensions. Using the scaling properties of certain c
relation functions of the ESM it is possible to express
mean durationDA of avalanches as an infinite series of ce
tain inverse power-law terms. From this result forDA we can
get some hints about the asymptotic behavior ofDA for D
→0. The first possibility is that this behavior is very com
plicated and not accessible at present. Second assuminDA
;uDu2k, we have shown thatk cannot be equal to the criti
cal exponentn i . These two possibilities are not very temp
ing, because they are not in accordance with scaling the
But as shown, there is another possible solution, namely,
the infinite series forDA does not converge nearD50. In
this case we must haveDA5` and p(t,D); f (D)/t11d for
uDu,Dc , whereDc is a new very small critical value. Fo
this strange looking hypothesis we have obtained some
dence: First, scaling theory is true at least foruDu,Dc . Sec-
s
e,

,
et

v.
n,

.

.

R.
,
-

n-

02611
t
n-

r-
e
-

ry.
at

i-

ond, we are able to construct af (s,D), which is not a scaling
function, so thatp(s,D); f (s,D)/st, and the mean size o
avalanches isSA;uDu2g, as it must be. Finally we have
undertaken a special simulation experiment on a o
dimensional Domany-Kinzel PCA that supports strongly t
Dc hypothesis. Outside the critical region the usually a
sumed scaling forms of the avalanche quantities could
valid approximately. It seems to be very difficult to exact
prove theDc hypothesis. Spreading experiments do not se
to be able to reach large enough avalanche durations
which the postulated crossing over of the survival probabi
to an inverse power-law behavior could be observed. T
means that only further theoretical investigation can so
the scaling problem with certainty. In the case that it will tu
out that theDc hypothesis is true, this may imply importan
consequences for natural systems that operate near a p
transition, because then catastrophic events that exhibit l
duration should be much more likely as conventionally
sumed. Especially stochastic systems that show the so-c
‘‘self-organized to critically’’ phenomenon@22# should be
presumably effected.
.
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