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Scaling theory and spreading dynamics in systems with one absorbing state derived
from an equilibrium statistical model
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We show that for systems with one absorbing state, the widely assumed scaling properties of the survival
probability and of the probability density of the size of activity avalanches cannot be true in the asymptotic
limit. Trying to answer the question, what is the true asymptotic limit of these quantities, we study Domany-
Kinzel probabilistic cellular automata using an equilibrium statistical mechanic nig&). We are able to
express important quantities of the avalanche dynamics by correlation functions of the ESM. The application
of scaling theory to the ESM allows for the derivation of the scaling properties of quantities of the avalanche
dynamics in the form of infinite series. From these results we can obtain possible solutions for the apparent
scaling problem, but cannot decide definitely which one is true. The most appealing solution, for which some
evidence is given, states that there is a narrow range around the critical point in which, for example, the
survival probability has the same power-law behavior as on the critical point. Outside this narrow range, the
usually assumed scaling should be approximately valid.
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[. INTRODUCTION be expressed by correlation functions of the continuous fields
for which the scaling properties are well established from the
Stochastic nonequilibrium systems with absorbing statesienormalization group approach. The continuous field ap-
i.e., states in which the system can be trapped without angroach is not capable to describe the avalanche dynamic, this
fluctuations, and with phase transitions from the absorbings mainly the case because the absorbing state is a set of
states to active states are important models for describinmeasure zerd10]. Therefore, to investigate theoretically
real world processes such as the spread of epidemics, peroehat the correct asymptotic behavior B{t) andp(s) near
lation processes, autocatalytical reactions, and many moréhe critical point is, we must use the original discrete space
for an overview see Refl]. A canonical example of such structure of the PCA on a lattice and describe it by a Markov
systems with one absorbing state is the directed percolatioprocess continuous or discontinuous in tipdel1].
(DP) universality class. This DP class has been extensively In the second part of the paper we use a description as a
investigated in the pa$l—3,8,19 and it seems that we have Markov process discontinuous in time together with the
now a full understanding of these systems. However, in thisong-known fact that thed-dimensional Domany-Kinzel
paper, we show that there are problems left concerning thBCA can be mapped to an equivalent equilibrium statistical
scaling in the vicinity of the critical point of certain probabil- mechanic modelESM) described by a Hamiltonian on a
ity distributions describing the dynamic of the spreading ofdiscrete space-time latti¢é,5,12,14. We are able to express
activity avalanches generated from a localized “seed” of acthe survival probabilityP(t) and the mean life-tim® , of
tivity in the absorbing state. An example is the survival prob-avalanches as series over certain correlation functions of the
ability P(t) of avalanches and the probability dengit{s) of  corresponding ESM. Applying the principles of the renor-
the size of avalanches. First, we show exactly that the usumalization group to the ESM Hamiltonian, we get the scaling
ally assumed scaling ofP(t)~t °g(At*”) and p(s) properties of the ESM correlation functions. Using these
~s~"f(As”), whereA is the distance from the critical point properties the behavior d?(t) for larget near the critical
and ¢, v, 7, o are universal critical exponents, cannot bepoint is obtained in the form of an infinite series. Also, for
true in the asymptotic limit—o, s—o, A—0. We present D, we get an infinite series of certain power-law terms. This
simulation results for a four-dimensional Domany-Kinzel second part of the paper is somewhat cumbersome, but we
probabilistic cellular automatoiPCA) [4,5] that exhibit  think that it is necessary to review the mapping of a PCA to
relative clearly that there is no conventional scalingR¢t). an ESM in some details to be able to derive the meaning of
Indeed, up to now, the theoretical foundation for the assumethe ESM correlation functions and the scaling properties of
scaling ofP(t) andp(s) is not very strong. The origin of the these functions. These results are central to our approach and
scaling of other quantities of the spreading dynamic of avaare not presented in the literature up to now in sufficient
lanches, such as the mean number of active sites in avaletail. From the derived series expansionRgt) and D4,
lanches or the mean spatial extension of avalanph&$ is  we are able to point out the possibility that there is a narrow
well understood from the renormalization of the field theo-range around the critical point, where the scalingP¢f) is
retical formulation of the system model continuous in spaceghe same as on the critical point, namélgt)~t~?, and the
and time[8,9]. This is the case, because these quantities caconventional scaling is only approximately valid outside this
narrow range. We cannot prove this very unusual view ex-
actly, but we present some evidence from theoretical consid-
*Electronic address: albat@a-w.de erations and from simulation results that it may be true. If we
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are wrong, there is only the possibility thB(t) obeys no can be considered as the limit of a sequence of discontinuous
universal scaling properties asymptotically, and this is nofPCA’s with time-step differences going to zero, so that in this

very satisfactory. case,p(t,A) must also be a power series & It is safe to
write P(t,A)=1—37_ [ [tpa(u)du]A", showing that

Il. ANOMALOUS SCALING OF THE SURVIVAL P(t,A) is also a power series iA for finite times. We are
PROBABILITY now able to prove that the E3) cannot be valid. The cru-

cial points are that the conditiofiyp(t,A)dt=1 must be
T : . . ! Oy ifilled for A<O independent oA and thatp(t,A) can be
an _|nf|n|te.d|sc_rete space Iatthe. Each Iat.tlce_sne can be in a@xpanded in a power series At

active or inactive state. T_he time evollutlon is cons'lder.ed to Suppose that Eq3) is valid, we can write
be continuous or discontinuous. Setting a site active in the
absorbing state results in the development of an avalanche of p(t,A)=pa(t,A)+e(t,A), (4)
activation. If the system parameters are such that no active

phase exists, the avalanche is always dumped out in a finitend choose d&, and a|A,| such that fort>t, and |A|
time and the absorbing state is reached again. In the case thafA| it is |e(t,A)|< pa(t,A) and

an active phase exists, there is some probability that the ac-

tive state is reached for timte—~cc. For a definition and dis- ‘ J“S(t A)dt
cussion of the critical exponents, the scaling properties of o
guantities used in the description of the spreading dynamics

and for the derivation of scaling relations between the criticaFurther, we conclude that,(t,A) is also a power series in
exponents, see Ref4.,6,7]. The survival probability?(t) of ~ A. The normalization condition now reads

activity avalanches is the probability that at tih¢he ab-

sorbing state is not reached. The usually assumed asymptotic N o 0

scaling behavior oP(t) in the vicinity of the critical pointis 1~ P(*,4)~ > CpA"= J'to Pa(t,A)dt+ ftOS(t,A)dt,

A=0
(6)

where c,,= gopn(t)dt. For A#0 and after substitutingi
=|A|t™, the first integral in Eq(6) is
where A is the distance from the critical point, we choose
A <0 in the inactive phase ank>0 in the active phase, and o sl [ h=(u)
ft pa(t,A)dt= VH|A|V\| (J'|
0

<ft0 pa(t,A)dt. (5)

1 1/
|:’('f)~t—59(t 1A), (N

o, v| are universal critical exponents. The probability density
of P(t) is p(t)=—4dP(t)/at for larget. From Eq.(1) we

obtain whE
)

u
Oul+ V”5

—adu
A‘té/vuul-%— VH5

)
1 1y, ’
Tsh(ta). )

p(t)~

with the constanuo>|Ao|té/"H andh™(u) being the parts of

h for A>0 andA<0. Consider the right-hand side of Eq.

(7), the second integral is a constant independent ofur-

p(t,A) ther insertingh™(u)==7_,h, u" into the first integral and
= (3) integrating all terms, we obtain

The exact meaning of E@2) is

im ———=1,
t—ow,A—0 pa(th)

+
0 s

h=(0
wherep(t,A) is the real probability density angl(t,A) is pa(t,A)dt= (5

the right-hand side of Eq2). Note that Eq.(2) does not to 0
determinep,(t,A) uniquely, it is only a necessary condition. v e N
For a discontinuous PCA, functions suchpgs,A) are only ~ [of d= 1'21’?’ 5 where y6<1 [6], a”=Jodu[h™(0)
defined on discrete time steps. In this case, we extend the "~ (W)J/u™""1°#0, and

definition to continuous times using staircase functions, then . %

all summations over discrete t?mes can bg expressed by in- wpa(t,A)dt= h™(0) —hi|A|In(A])+ 2 bZA" (9)
tegrations over time. The survival probability F(t,A)=1 to to n=1

— [tp(u,A)du, and the normalization condition qf(t,A) . . .

reads[ p(t,A)dt=1— P(w,A), whereP(x,A)=0 for A  for d=4, with »=45=1[6]. Thea, andb, are constants
<0. For the following consideration, it is important that for independent ofA. From this result it follows that foA <0,
finite times it is possible to writep(t,A)=37_,p,(t)A". ~ WhereP(<,A)=0, andA—0 thsre is a singularityfor d
This must be true for a discontinuous PCA, because the up=4 We assuméy #0), so thatf; p,(t,A)dt cannot be ex-
date rules ensure that the probability of each possible activgganded in a power series af aroundA =0, and because of
tion pattern occurring at a given time is a polynomial of theEq. (5), this singularity cannot be canceled out by a possible
probability parameters of the update rules. A continuous PCAimilar singularity offf;s(t,A)dt. The conclusion is that Eq.

L VuatIAl”“‘“rnE::l a;|Al" (8)
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(6) cannot be satisfied, thus, the scaling p{ft,A) is not 80 L
possible forA<0 in the sense of Eq$3) and (2). Further,
the scaling of the survival probability given by Ed) can-
not be true. An exception can be tbde4 case, where scal-
ing is possible if the scaling function is such tigt=0, but
that seems very unlikely. The density of avalanche sizeZ 7
p(s,A) also cannot scale fak <0 in the usual form given
above. This follows from the fact thai{(s,A) is also expand-
able as a power series i, and the above derivation is valid
with minor changes ify is replaced by I and 6 by 7—1.
Note that the above arguments do not apply to quantities fa
which no normalization condition is needed, for example,
not to the mean number of active site$,A)~t7¢(tYIA)

[6] in activity avalanches at a given time.

We have shown that foh <0 the usual assumed scaling
is not possible fop(t,A) and P(t,A). Is this also true for
A>07? From the above discussion we cannot infer this, be
cause nowP(«,A)>0 andP(«,A) may have the correct
singularity forA—0 to satisfy the Eq(6). Indeed, the scal-
ing assumption Eq.(1) can be written asP(t,A)
~A"I%g(tYIA) |, so it seems thalP(,A)~A"I° [1,7], and
at least ford=1,2,3 this is the needed singularity. But this
conclusion is wrong as is now showR(t,A) can be ex-
panded in power series df, therefore, als@(u), whereu

=t'"IA. To getP(x,A)~A"’ we needg(u)~u"’ for u LT oL T o om | o | oo on
— o0, Writing g(u) =cu”l°+ &(u) shows that there must ex- A

ist auy>0 such that fou>uq it is |e(u)| < cu”l®, soe(u) ] ] o o
cannot cancetu’l’, Thus, it is necessary that’l’ can be FIG. 1. Scaling of the survival probabilitte) and the activity

intensity (b) for a four-dimensional Domany-Kinzel PCA near the
critical point p,=0.146 158 (5) for 1#A=0.3, 0.5, 0.8, 1.3, and
2.3 (from above to beloyin the inactive phase.

expanded in a unique power series in the range u<<e to
fulfill the last equation, but this is not possibleiifé is not
an integer. Fod=1,2,3 v is not an integer, so the scaling
assumption cannot be true. FOE 4, this is also the case,
becauseP(e,A) has not the needed singularityln A of  break down for largefA|tY”I values and the same or lesser
Eq(9). Later it is shown thaP(e,A)~A"I? is indeed true, A values, but these values are not reachable for simulations.
but this can only be realized if the scaling assumption is noBut for d=4, the situation is completely different, in the
true. Then inP(t,A)=37_,P,(t)A" theP,(t) can go in the inactive phase and the rang#|t*"1=0.025...,0.12, cor-
limit t—c to +o, so that it is not possible to calculate responding to maximal avalanche duratitx 10000 and
lim,_., P(t,A) by applying lim_.. to each term of the series, 10°|A|=0.3, 0.5, 0.8, 1.3, 2.3, the scaling Bft,A) is very
and thus, it can be thd&(e,A) is not a power series iA. bad compared to thigt,A) scaling, as shown in Fig. 1. The
Now the question arises what the correct asymptotic bepc value has been determined similar as described by Voigt
havior ofp(t,A) andp(s,A) really is. From the above result and Ziff [19] from a plot of I (t)/t” versust”l, with =0
we can only conclude thap(x,A)~x"°f(x,A), wherex  andy =1, for differentA values. The obtained result j&
=t,s, e=1+ 6,7 and f(x,A) must be a power series i =0.146 158)(5). Thesample size for each value has been
for finite x and lim,_..f(x,0)>0. Before we try to answer about 10 avalanches, resulting in a statistical error consid-
this question, we present some simulation results, whiclerably lower than the scaling violation &f(t,A). It would
show relatively clearly that the scaling &f(t,A) for some  be tempting to attribute the bad scalingft,A) to a large
cases is not even fulfilled approximately. We have performedorrection to scaling, but Fig. 1 does not show that the scal-
extensive simulations of the Domany-Kinzel PCA5] for  ing violation goes to zero foA — 0, therefore, we conclude
the dimensionsl=1 andd=4 on a hypercubic lattice, and that the result indicates that; #0, and thus, there is no
with the update rule that a site is activated with probabjity exact scaling.
if at least one nearest neighbor is active. The results show The above results can be extended to systems in the DP
that for the casel=1 in the inactive phase and in the range class with nonuniversal exponeét especially systems with
|A|t¥I1=0.005 . ..,0.06, corresponding to maximal ava- many absorbing statdd,17]. The only requirement is that
lanche durations up to=50000 and 1§A|=0.5, 1.0, 2.0, p(t,A) is expandable in a power series®f but this should
the scaling ofP(t,A) is nearly as good as oft,A). For this  be the case. The anomalous scaling of avalanche quantities
simulation, the highly accurate values fog, v, », andd  shown above has some similarities with situations in other
obtained by Jensefil6] from series expansions are used.contexts. For example, in the theory of kinetic roughening, it
According to the above result, the accuracy of scaling shoulds known that the scaling function of the local interface width
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is not always an analytical function of a quantity that has a=M—1 can be considered as the configurations af+al
meaning analogous t3"IA, for details se¢18]. But in our  dimensional lattice. Using Eq$10) and (11) the probability
case, the situation is much more serious, itpé,A) of such a history path is given by
~t7°f(t,A) and it is not possible thdtis only a function of
tYIA. In the following part of the paper we try to answer the Pratn=Tiy, 10y o T,y T, =X —H(s)],
now apparent scaling problem of quantities important for the (12
description of activity avalanches. As explained in the Intro-
duction, discrete lattice models must be used to get inside iWhere
the dynamic of activity avalanches. N M—1
H(sp=—2 > [in{p(si"n)}+hisi], (13
. MAPPING OF A PCA TO AN EQUILIBRIUM =1 t=0

STATISTICAL MECHANICAL MODEL N _ _ _
and theh! are auxiliary fields that go finally to zero. This

~ We consider PCA models on discrededimensional lat-  construction can be viewed asda- 1-dimensional system
tices of N sites, which evolve in discrete time steps gefined on a discrete lattice in thermodynamic equilibrium

=0,1,2..., andwhere each lattice siteat timet can be \ith an HamiltonianH (s!) and a transfer matriX. The par-
only in an inactive state;=0 or in an active stats}=1. The tition function Z(M,N) of this finite ESM depends on the
global state of the PCA at time is given by |  poundary conditions adopted for tier 1-dimensional lat-
=(s1,S5, - .. ,Sy)={si}. It is assumed that the time evolu- tice. Choosing thé=0 boundary(statel ) as fixed and sum-
tion of the PCA is a Markov process ming over all other site state$=0,1 yieldsZ=1 indepen-
P(t+1)=TP() =T 1P(0), (10 dent ofly [13]. This is simply a consequence BT, ;=1.

The drawback of this boundary condition is that formally for
eachl there is a different Hamiltonian. To circumvent this
we simply sum over all, states yieldingZ=2". Another
possibility choosing the boundary conditions lig=1y,_1
éperiodic boundary conditiong14]. Using the spectral rep-
fesentation of™ we get for this case

whereP(t) =[P,(t)] is the column vector of the probabili-
ties P,(t) that at timet the PCA is in the staté, and T
=(T, ;) is the matrix of transition probabilities from stale
to statel. The update rules of the PCA are assumed to b
such that there are local probabilitipgs, *|n!), so that

N ZMMN)=2 (T) =2 (W)™, (14)
To=1IT p(st*4n), (1) IR
i=1
Here,Z depends also on the boundary condition of the space
with 1={s{"*} andJ={s}, andn{=(s] 5| , ... s ) de- lattice (by the \,<1). In the limit M,N—ee it is Z=A,

scribes all possible states Kfsites from a neighborhood ~ WhereA is the number of attractor@umber ofA ,=1). All

of sitei. To preserve the total probabiligy(0|n}) + p(1|n}) these different boundary conditions and others that are pos-
=1 is required. For later use, some well-known results abougiPle generate only surface effects, and as a consequence, for
Markov processes are listed. }f, are the eigenvaluesp? M,N— < these effects should disappear in observable quan-

(column vectoy the right eigenvectors an‘ﬁb (row vecto) tities. Indeed, the free energy per site of the space-time lat-

the left eigenvectors oF, the spectral representation Bf is tice is always zero. Further, the later considengubint cor-
Ti=3 (AT, with T _¢R¢L and¢L¢R—5 Assum relation functions §-CF) of the ESM should be independent
— “a\MNa @ a YaVa aVp— CYap- -

. ; LY of the boundary conditions, provided the ESM is defied by a
ing the ergodic condition™(’), ;>0 for somet and alll,J, a unigue Hamiltonian. Thus, the partition function of the ESM

unique eigenvalue\,=1 with ¢-=(1,1,...,1) will exist can be assumed as
and the other eigenvalues dig;|<1. In this case the PCA
evolves to the stationary staé=) = ¢ independent of the Z=Tr{exp{—H(s})}], (15)

system history. If the PCA is not ergodic or the system Blize

goes to infinity, there can be more than one eigenvalye where Tr means summing over all stagss 0,1 of the sites

=1 [14]. ForN—= a hypersurface can exist in the spde in the space-time lattice. In the derivation of the meaning of
of parameters defining the local transition probabiliflesn  then-CF’s, we use the Eq14) for Z, because the derivation
which the number of eigenvaluas,= 1 change. This hyper- then is easier, but the result should be independent of this
surface separates different phases of the system. Considege.

point of ) with more than one eigenvalues,=1: more The n-CF are defined in the usual way by
than one stationary statattractoj will exist and the selected

one depending on the initial conditid®(0). - . "z
From the Markov process, an equivalent equilibrium sta- (880 - S)= Z oriigntz e (16)
tistical mechanic moddESM) can be obtained. For detailed J ila P J inlh o

properties of the ESM and for applications see Refs.
[4,5,12,14. We now review the construction of the ESM. A Substituting Eq(14) into Eq. (16) a n-CF can be expressed
path of statedy, I;,..., Iy_41 evolving fromt=0 tot fort <t,< ...<t, as
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t1t t .
(s’s% ....8M= lim
172 n

M_ —t,_ —
gy, B, TS T,

Tl fnolp-a 777 I2.11

where Sf)| is one if inl the sitei att is active and zero otherwise. Inserting the spectral representatid’rﬁmlfbtln andei '
I ,
we get

1
1.t thy_ — ty,ty, .. t,
(s's? ... SM =71 a(g‘:l) QL2 My, (18)
with
tytn, ..., t o L ot ath—the t to—ty, R
(Qii’é """ i”)a_nllle In Z 1 ¢“'n(sin)'nT'n"n711 o '(Siz)IZTé’lll(sii)ll(ﬁall' (19

For the caséA=1 and finiteN we haveqs';,n: 1, thus, each K

n-CF is the joint probability to observe active sites at  H(s)=—2 ( > f(ndIsi Hin(py) +(1-s{*)
(i1,t1), (i2,ts), . .., (in,t,) if the system is at time, in the htAn=0

unique stationary state. This interpretation must also be true

in the limit N—co. For the caséA>1 andN— the situa- xIn(1—p,)]+hist
tion is not so clear, but we can argue in the following way: If

for finite N the system is not ergodic, there can be more than_, . . . .
one\,=1, but then theT matrix must disconnect, after an This Hamilionian is the same as the one obtained by

appropriate reordering of the states, into submatrices alongOmany and Kinze[4]. Other valid ESM Hamiltonians can
the diagonal. Therefore, it seems plausible that an ergodif® constructe@ls], but this one has a structure that is famil-
system with more than one,=1 for N— tends to a none- & in equml_Jnum statistical mechanics. This Hamlltonl_an is
ergodic behavior for very larg&l, meaning theT matrix  not well defined fop,—0,1, but then-CF's are. APCA with
approximately disconnects and there @re 1 eigenvalues One absorbing state is obtained fay—0 andh{=0. In the
extremely near to one. Further, the correspond;hig have spacef) of the p, with po=0 andh{=0 the only stationary
only large positive values for a specific range of states andtate for points near enough the origin(@fis the absorbing
the ¢~ are large and nearly one for the same range of statestate with activity zero, and there can be a continuous phase
Then for N—o the quantity Q;*'?'"""i"), describes the transition at some hypersurface ¢h (critical manifold, so
e " that on the other side of this surface there are two stationary
and eacin-CF is the average of these joint probabilities overStates, the absorbing state gnd an active state _W'th a mean
all attractors. activity greater than zero. It is known that there is no phase
For a class of important PCA an explicit expression fortransition for smallp,>0 and(or) small hj#0 and also not
p(st*1|n!) can be given that leads to an ESM Hamiltoniann the limit po— 0, unless the limit point is on the critical
that has the usual form of Hamiltonians studied in equilib-manifold[4,9]. o _ _
rium statistical mechanics, namely, products of the state vari- N €quilibrium statistical mechanics for systems with
abless! coupled together linearly using some coupling con-Similar Hamiltonians as given in Eq20) the scaling prop-
stants. Here we consider only tliedimensional Domany- erties of correlation functions can be obtained using the

Kinzel PCA[4,5]. The synchronous update procedure for this'enormalization groupRG). Before this is accomplished, the
PCAs: If at timet the sitei hasn=0,1, . .. k active nearest dynamics of the spreading of a perturbation applied to the

neighbors, this site is activated at tire 1 with probability absorbing_ state is studied in the_framework of the ES_M. Itis
p, and inactivated with probability X p,,, regardless of the thgn possible to r,nake a connectlpp between 'the scaling prop-
state ofi att. We define functiong, (n')=0,1, wheren! is a erties of then-CF’s and the quantities describing the spread-

state of the setU of nearest neighbors of site These func- ing dynamics.
tions have the properties th(n!)=1 if exactly n of the
nearest neighbors of siteare active and,(n)=0 other-
wise. It is easy to see that thekecan be realized as linear
combinations of products of thé. For example, fod=1 it Let us apply a perturbation to the absorbing state in the
can be chosenfo=(1—s,4)(1-s_41), fi=s,(1—-s.) form that the sites of a s&are set active at a ting. Then
+s_(1-s,) and f,=s,s_, wheres,; ands_; are the an avalanche of activation is spread out for tirheg,. Con-
states of the two neighbors of a site, in generf), sider a finite system witlp,=0, and denote the state with
=Hjeu(1—s}). A valid ESM Hamiltonian is, as can be eas- exactly all sitesieS active asls. Then the evolution of

ily verified, given by Pp(tp) with Pp(to),s=l andPp(ty), =0 otherwise, as given

. (20

same joint probability as above, but now for the attracior

IV. DESCRIPTION OF THE SPREADING DYNAMICS IN
THE ESM FRAMEWORK
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by Eq.( 10), describes the spreading of a perturbatmith evolution of avalanches. Now it is possible to express the
m active sites. We are especially interested in the joint probsurvival probability using only the-intensities. The quantity
ability to find at timet>t, the sitesiq, i, ... ,i, active,

which is

Q(t)=|§; H (1-sD)(T), JPp(te); (25

pitl,iz, ,__,in=2 (Sitlsitz o -s’i[n)l(TtitO)l,JPP(tO)J- _ ._ _ . o o
hJ is the probability that at timethere is no activity remaining,

(2D meaning the probability that an avalanche has a duration

betweent, and t. Therefore, the survival probability is

P(t)=1—Q(t) and it is obtained from Eq25) by substitut-

ing Eq.(22), using Eqs(23) and( 24) and setting =0 for

t>0 as

Our goal is to describe this process in terms1efF’s of the

ESM. To do this, a system with a smal} and the stationary

stateq’;g(po) is considered, and finallg,— O is carried out.

If it is possible to express the component$p{ty) as sums

over thegpX(po);. the Eq.(18) can be used to transform the o

right side of Eq.(21) to n-CF’s. One possibility is to choose P(t)= 2 (=) (1), (26)
n=1

1 -1
Pe(to) =—; 1L (Sito)l; T"le:[s fO(”;O )J¢§(p0)3- and P(0)=1. Because of the cone condition we must have
Po 22) I,(t)=0 for all n>ny(t)~tY, so that the sum overis really
finite for each finitet. The probability that an avalanche has
To see that this is correct, we note that the factord durationt=0 isp(t)="P(t)—-P(t+1). The mean duration
Hjesfo(n}07l)J¢cF)e(pO)J is nonzero only if in the statd for ~ Of an avalanche is defined Hp,=2_,tp(t). Using Eq.
all j €S all sites fromU are inactive. On the other hand, the (26) yields
right side of Eq.(22) is only nonzero for stateswith all i eS .
active, and to get such drthe T, ; can only generate these . B n—1
active sites using at leash spontaneous activations with DA_; P(t)—n; (=™, 27
probability py. Therefore forp,—0 the right-hand side of
Eq. (22) is one forl ;IS an_d zero otherwise, where we have here 1,=3%,1,(t) can be interpreted as the total
used the fact thaiy(pg), is 1—O(py) for =(0,0, ...,0) n-intensity.
and O(py) otherwise. Substituting E¢q22) into (21) and
using Eq.(18), we obtain

0

V. SCALING THEORY OF THE ESM

According to the RG principles, see for example Ref.
[20], it is assumed that near the critical manifold for small
%23) Po>0 and smalh! and provided thé} vary slowly enough

over the space-time lattice, a RG transformation exists. Each
where the ESM averagg. . .), is the part of( ...) that RG transformation consists of a coarse-graining transforma-
goes to zero in the limip,— 0. This is always the case for tion and a subsequent rescaling to the original lattice spacing
finite N, but Eq.(23) is also valid in the limitN— and for ~ and transforms the coupling constants in the ESM Hamil-
an active phase. Here, the part(of. . ) that goes to a con- tonian to a new set of coupling constants. We do not con-
stant forp,—0 is not included ir ...),. If Sconsists of struct such a coarse-graining transformation explicitly, but
one siteig, the pit .. must be zero if for at least one use only general properties of such transformation to derive a

LA scaling theory for th@-CF'’s. The coarse-graining uses scale

factorsa, >1 in the spatial directions ar@>1 in the time
direction. Further, it is assumed that in the linpg—0, a
. o Svalid RG transformation exists. A sequence of such RG
ensured py E9(23)’ as can be e?‘s"y verified. . transformations started on the critical manifold has coupling

Summingp; i, .., over all sites fom=1, overalldif-  qants that stay on the critical manifold and fICRG
ferent pairs of sites fon=2, over all different triplets of flow) to a unique critical point on this manifold. A sequence
sites forn=3, and so on for greaten, we get a quantity of RG transformations that starts near the critical manifold

1

. t tg—1

p} i = lim — si‘sit s}H sfo(n® 7))
112> n 0o Opo 1'2 Nfes

sitei, with the position vector;, it is |rik—rio|>t—t0. This
condition is called the cone condition. F8with more than
one site, this condition is more complicated, but it is alway

called then-intensity, which is causes a RG flow off the critical manifold. Thus, the critical
point is a fixed point of the RG transformation, and there is

|(t)= i Z ot o (24) only one line inQ (po=0, h{=0) from which the RG flow
Nt zid o, #i, ‘1'2dn starts off the critical point. The distance on this line is mea-

sured byA>0 if the RG flow goes in the active phase and by
In spreading experimen{$] I(t)=1,(t) is measured. Gen- A <0 otherwise. In the vicinity of the critical point, the RG
erally, I ,(t) can be measured by cumulating at each time stefransformation can be linearized, yielding the linear transfor-
the possible combinations{q)( of the | active sites in the mation
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A=A,A, Po=Agpo, hi=Aguhf, (28)

whereA,, Ag, A, are the eigenvalues of the linearized RG,
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Gn,m(rkl iti !AipO)Npr0n|A|an_myl0VLfr?,m(rk||A|VJ'Yti|A|VH)-
(35

and it is assumed that there are negligible couplings betweehhe quantityG, o equals forp,—0 the constant mean activ-

the A, po, andh! directions. The RG flow goes off the criti-
cal point in theA and h! directions, these directions are
relevant in RG terms, therefore,>1 andA,,>1. In thepg

ity (s!), which is greater than zero fdr>0, therefore, from
Eq. (35) we get(s{)~A# with 8=+ v, (d—y, ). There is
an upper critical spatial dimensiah , so that ford=d, the

direction, the situation is not so clear, and it turns out latefmean-field values of the critical exponents are valid. For the

that it is marginal (\o=1) for the DP class. Because of the

DP universality class it igl;=4, andv, =1/2, =1, B8

group property of the RG, the eigenvalues must have thé 1 are the mean-field valugs], therefore ford=4 we have

form

A,=a Yta=gple, (29
wherea=A,0h andy, ,,yj,>0 for relevant directions, and
zero for marginal directions. (A, p,) (for hi=0) is a typi-
cal spatial length andi(A, py) is a typical time, for example,
the correlation length and time of anCF, these quantities
transform under one RG step as

-~ 1 ~~ 1
f(A,po%a%(A,po), T(A,Po)~§”T(A,po)- (30

Using Egs.(28) and(29), the singular part of andT in the
vicinity of the critical point is obtained from Eq30) as

1
E(A,po)~ ——f, (polA|7Y10™),
|A]":

1
T(A,po)~ ——-f

IR

(31)

with v, =1/, , and y=1/y,. The scaling of a general
n-CF

Gu(rinti A,po.h) = (5’82, ... 8", (32
where u;<u,< .. Na=rj,,—fj, L=Uis1—U
withi=1,2,... n—1 forn>1, and where fon=1 nor;, t;
dependence occurs, can be derived from(&6). and the fact

C=<u,,

Yy, p=4. Ford>4 a scaling relation that includesk (hyper-
scaling relatioh cannot be valid. This is the consequence of
the fact that ford=4 the above scaling theory with the rel-
evant or marginal scaling variables, h, py, and all other
scaling variables are irrelevant cannot be true, at least one of
the irrelevant variables must be a dangerous[@0§ mean-

ing that scaling functions such d&s of Eq. (34) are not
analytical in such a variable and this variable cannot be ig-
nored. We do not further investigate the consequences and
restrict ourselves td<4. An important variant of E¢(35) is

P
Gn,m(rkl Wt ,A,pO)N t(”ﬁ_mVJ_OVJ.)/VH
i

frm(Ti /72,6714,
(36)

with z=2v, /v andt; being any of the;. This expression
gives also the scaling form fak=0. If some of thec;': in
Eq. (32) are replaced by clusteﬂ(i,u)evksi“, whereV, is a
set of sites around the sitg,(u,) with an extension of the
ordera, in spatial direction and, in time direction, and the
distances between these clustersrare-a, andt;j>a, the
resultingn-CF must obey the same scaling as given by Egs.
(34), (35), and(36).

Now we are ready to get the scaling properties of the
p}l‘iZ’ ...i, given by Eq.(23) for the case that the s&tis a
set of sites aroundi,ty) with an spatial extension of at
most the order, . The right-hand side of Eq23) can be
expressed as a sum over certakCF’s and each of these
terms has the fornfs; si_, ... Sj Il u)e5,S!), WhereSy is a

thatZ is invariant under an RG transformation. The result isset that has the properties of the abdesets, therefore the

Na ti ~ ~ A

T pO!
a a”

nd
ht

_ a, g
i Ahn

Gy Gp(ri,ti,A,po,hp),

(33

Whererk|=|rjk—rjl|>al for all k,I1=1,2,...n with k>
andt;>a foralli=1,2,... n—1. In a similar way, as Eq.
(31) is obtained from Eq(30), one finds that the scaling
properties ofG,, for A+0 andh!=0 are

G(riti A, po) ~ [A|*nf 5 (rig| A"t A1, po| A 7Yrovs),
(34

wherea,=n[v+v,(d—y, )] andf, is for A>0, f for
A<0. Because there is no phase transition fo£0 and
po—0, it is possible to expand E34) in a power series of
poA “Yro¥1 where the term of degrem reads

scaling of each term can be obtained from E§) if t—t,
>a) and ry=|[r; —r;[>a, for k,1=0,1,...n, k>I. By

replacing eacrs}k by the average over ths% belonging to

sites in a small spatial volume around the corresponding
sum over thep}lYiZV ..., Is the averaged-densitypn(ry ,t)
of activations, which obey the scaling

withn=1,2, ..., andy, n is a scaling function proportional

to f, 1y, It is not possible to realize the cone condition
exactly with Eq.(37), therefore, Eq(37) is only valid within

the cone somewhat apart from the cone boundaries. Consider
the casen=2 and the two perturbed sites are nearest neigh-
bors, then for the Domany-Kinzel PCA it is easy to see that

1

0 Ik
(T t) t[(n+1)ﬁ—mylonlfvug”‘m

tZ/Z’

tll"IA> , (37
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the spreading of activation evolves independently in theGrassberger and de la Tofff#| using the assumption that for

same way on two different intertwineidt sublattices[4].
This means that the-density for the casen=2 can differ
from the n-density form=1 only by a constant factor and

A>0 and largd, a sphere with nearly constapy is expand-
ing with a constant velocity, see also Refl1]. A further
derivation was recently given using a continuous field theory

cannot have different critical exponents as indicated by Eqof the PCA[10].

(37), thus, it followsy, o=0. Therefore, only three indepen-
dent critical exponents exist, for example, v, , andy, ,

and it must be possible to express all other exponents by
scaling relations using only a set of three independent expo-

Using the last result we get fak#0

o

PO~ S, (~ 1) MU g1,
t 1

n=

(42

nents. This result is in accordance with other derivation
[1,6,7]. Because we are interested mainly in scaling properThe series in Eq(42) has a complicated structure, and it is

ties, it is sufficient to consider only the case=1.
Integrating Eq.(37) over all spatial coordinates gives the
n-intensity att as

In() ~t77 (=D (t1A), (38)
where n=dz/2—2p/v| and n,= 5+ B/v|. ForA=0 then
intensity should increase with thereforen>0 and n,>7»
>0, and ford=4 it is =0 and#n;=1. In the caseA <0
the n-intensity decays exponentially far—o with a corre-
lation timeT,~|A| ~"I. The leading part of the total inten-
sity is obtained forA<O by integrating Eq.(38) over t,
which yields

Cn

NGRS 39

Y= V“(l+ 7).

n

VI. SURVIVAL PROBABILITY OF ACTIVITY
AVALANCHES

In the asymptotic limitt—o, the survival probability
P(t) is obtained by inserting the scaling form E®@8) of
I ,(t) into Eq.(26). For fixedt, the infinite sum in Eq(26) is
really finite, and the scaling form df,(t) is only valid for
t>(n/2)Y4, thus, in the asymptotic limit all terms must be
considered, and we get

PO~ S (~1)"(t") ¢ a(t™18). (40

Consider firstA=0. In this case, the series in E@O) is a
power seriesf(x) of x=t", and fort—o we must have
P(t)~1/° with 0< é=<1. Therefore, there is 8,>0 such
that forx>xo f(x)=x"* T(x), with k>0 and lim_,..f(x)
>0. Assuming thaf(x) can be expanded in a power series
leads to the conclusion that this must be also truecfo¢x).
Because it is not possible to expartiin a unique power
series for allx>Xxg if k not an integer, so we conclude that
must be an integer. Thu$+ »—k#n;=0, and ford=4 we
have 6=k, so that onlyk=1 is possible. Assuming thatis
independent ofl gives

P(t)~—,

5 (41)

o=m1—n=plv|.

Substitutings/ v = 4 into the scaling relation for leads to
46+ 2n=dz This hyperscaling relation was first derived by

not obvious how we could get the usually assumed scaling
form Eq.(1). But we have already shown that really no such
scaling exists. FOA>0, P(t) must approach to the constant
value P(*)=p,/(s}). From Eg. (37) it follows p,
=A2Bf(rA™) for t—o and assuming that for largehere is
ad-dimensional sphere with constant expanding with con-
stant velocity, see Ref7], we havep;~A??, thus P(x)
~AP=A%". The behavior oP(t) for A<O and larget de-
pends on the behavior of the infinite sum in Eqd2), but
this is a complicated task. To get more insight, we study the
mean duration of avalanch&,= [tp(t)dt. Inserting Eq.
(39 into Eq. (27) gives

1
Al

Cn+1

D T E—
A (|A|771V‘|)n

(43)

> (D"

n=0

The infinite series in Eq43) is a power series in flA| 71"l
There are three possibilities concerning the functional behav-
ior of D(A). The first possibility isD .~ 1/]A|*. Assuming
that the series in Eq43) is convergent fod #0 and using
arguments similar as above to get E4l), the asymptotic
behavior of Eq(43) is obtained as

1
A<

Da k=y=lny, (44

wherel is an integer. Using the scaling relations fgr 7,,
and 6 we getk=[1+n—I(6+7)]v|. Ford=4 we have
k=1—1 and to get a&=0 only =<1 is possible. Choosing
<0 givesxk=v|, where the equal sign is only valid far

=4 andl =0, and forl=1 we havex=v|(1—-9)<v|. Set-
ting I=1, we havex=(1-46)vy, this was derived by
Miguel et al. [6] using the scaling assumption. The second
possibility isD,~f(A), wheref(A) is a complicated func-
tion with limy_of(A)=c. The last possibility is that the
series in Eq(43) does not converge in a narrow range
<A, aroundA=0, meaningD,= in this range. Strictly
speaking, the series in EG43) cannot go to infinity in this
case, but the serig3,=X;_,P(t) [see Eq(27)] then is also
divergent and give® 4= . If the first or second possibility

is realized, a serious drawback of the universality of scaling
arises, because E@1) should be valid also foD,. This
can be only realized iD,~|A| ™%, but it is not possible to
choose the integdrin Eq. (44) so thatx= | for all d. The
last possibility is the most appealing one. The series in Eq.
(43) diverges if thec,, approach fon— o« not fast enough to

zero, that means precisely lim..c;">0. If we assume this,

026113-8



SCALING THEORY AND SPREADING DYNAMICS IN . .. PHYSICAL REVIEW E54 026113

then there will exist such &, so that in the rangeA| 108 ; ' ; ; ' ; ;
<A, the mean duration i® ,=0. The consequence of this
assumption is that folA|<A., we must havep(t,A)
~h(A)/t**? where lim,_oh(A)>0 andh(A) is analytical
around A=0. We admit that this possibility looks very
strange, but it gives fofA|<A. a unified scaling view: -
Equation(30) can be satisfied for all quantities for which it
should be valid, and ih(A) varies only slightly around\ 1.04 1
=0, this can be interpreted as a correction to scaling. Notes_
that if really Iimn%xc}]/”>0, the totaln-intensitiesl, must E
grow exponentially fom—c and|A|<A., see Eq(39). = 102
For the avalanche sizes, the situation is different becaus:
the mean size iSy=1,, so thatS,~|A|~?. The consequence -
is that p(s,A)~f(s,A)/s”, with f(s,A) analytical in A,
limg_.f(s,A)=0 for A#0 and such that the correct 1.00
asymptotic behavior ofS, results. Indeed, assuming that
P(t)~1/° for |A|<A., it is possible to construct such a
f(s,A): Following the path of derivation given if6] to get
the critical exponent=(1+ n+268)/(1+ n+ 5), the aver-
age size of an avalanche with duration is Sa(t)
~ [tdt’'I,(t")/P(t"). Inserting for I; Eq. (38) and P(t)
~1h% we get Sy(t)~t1" ””fj)(t””HA). Assuming that the FIG. 2. Behavior of a lower bqund o_f theintensity for. highn
conditional probabilityp(s|t) for an avalanche having size ve_llues(up_ton=2000) for a one-dimensional Domany-Kinzel PCA
given it dies at time, is F(u) with u=s/S,(t) andF(u) is wlth th_e S|z_eN=nM andM=8,l6_,_and 3?(from below to above
bell shaped, with its maximum at=1, we get p(s) in the inactive phase near the critical point foy=p,=0.7054.
~ [ZdtF(u)/[Sa(t)t**°]. This p(s) is not a scaling func- o _ _
tion, but calculatingS, gives the correct resu,~|A| 7. with .Iow enough statlstlpal fluctuations, but enla_rgmg for
Further it is easy to see that thigs) has a cutoffs,, whicn ~ growing n the system size, for exampl=nM with M
is the maximals value giving u=1, and we gets, fixed, it is possible to get for relatively Iar%e tlrustable
~|A|~Y, where 16=v)(1+ 5+ 8) in agreement with Ref. Jn(nM) values. Trustable values fap(N) == ,(5)Ji(N)
[6] . On the other hand, if there is not a critical region with @re difficult to obtain, so we hope that the lower bound
P(t)~1/t° it is quite unclear how the correct asymptotic Jn(NM) can show the desired behavior from a plot of
behavior ofS, could be obtained. Jo(nM)Y™ versus 1. This plot must clearly indicate that it
Outside the critical region defined Ha|<A, it seems IS possible to extrapolatg,(nM)*" for 1/n—0 to a value
that the conventionally assumed scaling behavior of the disC>0 and the possibilityC=0 can be excluded with high
cussed quantities is approximately valid. Inspecting the reenough certainty. We have done spreading experiments for
sults of spreading experiments presented in the literaturthe one-dimensional Domany-Kinzel PCA with;=p,
[19,21], the above hypothesis about the existence of such & 0.7054, which corresponds tb= —0.000 085 3. Figure 2
critical region looks not very appealing. Looking at simula- Shows plots ofl,(nM)*" as a function of H for differentM
tion results forP(t,A) drawn in a double-logarithmi® vst  Values, from below to above it I =8 with n,,=1250 and
p|0t seems to show foA<<0 and |arget approximate|y an M=16 and 32 Witfnmax=2000. The statistical error of these
exponentia| behavior. According to our hypothesis, theséjata is lesser than the extension of the dots indicating the
curves should make a crossing over from a slope lasger ~ data points. The extrapolating curves are obtained from a fit
a constant slopes for larget, supposingA is sufficiently ~ Of the data points with a polynomial of degree three. The
close to zero. If this behavior really exists, it must residecurve forM =32 should be very near the limit curve for
outside the presently used maximal avalanche duration in~ - All data points are near one and far from zero, and
such spreading experiments. goes up to very high values, indicating that it seems very
There is another indication, obtained from a simulationunlikely that this curve can ever go to zero fon#0, but
experiment, which supports the above view of the scalinghat is not proof.
problem. If there is a lower bound,<I, of I, with
lim,_,..J,Y">0 for some fixedA nearA=0, we conclude
from Egs.(39) and(43) the existence of a critical region with
D=c. Such aJ,, could be the part of, in which exactlyn We have shown that the probability densfiyt,A), the
and not more sites are active. For a finite system Wiites  survival probabilityP(t,A), and the size densitg(s,A) of
we haveJ,(N)=<J,=<I,. Therefore, in spreading experi- avalanches in the absorbing state of PCAs from the DP uni-
ments with a fixedd <0 and system sizBl, the counting of  versality class cannot obey the usually assumed asymptotic
the number of events with exactlyactive sites gived,(N). scaling behavior. The origin for this anomalous behavior is
For fixedN and largem=<N it is difficult to getJ,(N) values the fact thafp(t,A) is expandable as a power seriesdirand

1.06 —

0.98 — 77— T
0.000 0.002 0.004 0.006  0.008  0.010 0.012 0.014
1/n

VII. CONCLUSIONS
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that the conditionfyp(t,A)dt+P(,A)=1 must be valid ond, we are able to construcfés,A), which is not a scaling

for all A. Therefore, the question arises what is the correcfunction, so thatp(s,A)~f(s,A)/s”, and the mean size of
asymptotic behavior of these quantities near the phase tramvalanches isS,~|A|~7, as it must be. Finally we have
sition. To investigate this point, we have used an equilibriumundertaken a special simulation experiment on a one-
statistical mechanic mod@ESM) for a Domany-Kinzel PCA  dimensional Domany-Kinzel PCA that supports strongly the
in d dimensions. Using the scaling properties of certain corA, hypothesis. Outside the critical region the usually as-
relation functions of the ESM it is possible to express thesumed scaling forms of the avalanche quantities could be
mean duratiorD , of avalanches as an infinite series of cer-valid approximately. It seems to be very difficult to exactly
tain inverse power-law terms. From this result B we can  prove theA . hypothesis. Spreading experiments do not seem
get some hints about the asymptotic behavioDgffor A to be able to reach large enough avalanche durations for
—0. The first possibility is that this behavior is very com- which the postulated crossing over of the survival probability
plicated and not accessible at present. Second assubjng to an inverse power-law behavior could be observed. That
~|A|™*, we have shown that cannot be equal to the criti- means that only further theoretical investigation can solve
cal exponent . These two possibilities are not very tempt- the scaling problem with certainty. In the case that it will turn
ing, because they are not in accordance with scaling theorput that theA . hypothesis is true, this may imply important
But as shown, there is another possible solution, namely, thatonsequences for natural systems that operate near a phase
the infinite series foD, does not converge near=0. In  transition, because then catastrophic events that exhibit large
this case we must hav@,=% andp(t,A)~f(A)/t**° for  duration should be much more likely as conventionally as-
|A|<A., whereA. is a new very small critical value. For sumed. Especially stochastic systems that show the so-called
this strange looking hypothesis we have obtained some eviself-organized to critically” phenomenoii22] should be
dence: First, scaling theory is true at least|idbf<A.. Sec-  presumably effected.
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